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Problem Set 1 - Analysis - Solutions1

Question 1 Suppose P , Q, and R are statements. Use the truth table to show that the
following statements are always true.

(1) (P ∧ (P ⇒ Q)) ⇒ Q (modus ponens)

(2) ((P ⇒ Q) ∧ ¬Q) ⇒ ¬P (modus tollens)

(3) ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R) (syllogism)

(1) Modus ponens

P Q P ⇒ Q (P ∧ (P ⇒ Q)) (P ∧ (P ⇒ Q)) ⇒ Q

T T T T T

T F F F T

F T T F T

F F T F T

(2) Modus tollens

P Q ¬P ¬Q P ⇒ Q ((P ⇒ Q) ∧ ¬Q) ((P ⇒ Q) ∧ ¬Q) ⇒ ¬P
T T F F T F T

T F F T F F T

F T T F T F T

F F T T T T T

(3) Syllogism

P Q R P ⇒ Q Q ⇒ R ((P ⇒ Q) ∧ (Q ⇒ R)) (P ⇒ R) ((P ⇒ Q) ∧ (Q ⇒ R)) ⇒ (P ⇒ R)

T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

1Instructors: Camilo Abbate and Sof́ıa Olgúın
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Question 2 Suppose A and B are sets. Show the following statements are equivalent.

(1) A ⊂ B.

(2) A ∪B = B.

(3) A ∩B = A.

Let us first show (1) ⇐⇒ (2):

• (1) ⇒ (2)
(i) We show that A ∪ B ⊂ B: Let us take x ∈ A ∪ B. By definition, either x ∈ A or
x ∈ B (or both). If x ∈ A, then x ∈ B because A ⊂ B. Thus, in either case, x ∈ B.
(ii) We show that B ⊂ A ∪B: Let us take x ∈ B. By definition of union, x ∈ A ∪B.
Therefore, we showed that if A ⊂ B then A ∪B = B.

• (2) ⇒ (1)
Let us take x ∈ A. By definition of union x ∈ A ∪ B. Since A ∪ B = B, then x ∈ B.
Therefore, A ⊂ B.

∴ A ⊂ B ⇐⇒ A ∪B = B

Next, let us show (1) ⇐⇒ (3):

• (1) ⇒ (3)
(i) We show that A ∩ B ⊂ A: Let us take x ∈ A ∩ B. By definition of intersection,
x ∈ A and x ∈ B.
(ii) We show that A ⊂ A∩B: Let us take x ∈ A. Since A ⊂ B, then x ∈ B. Thus, by
definition of intersection, x ∈ A ∩B.
Therefore, we showed that if A ⊂ B then A ∩B = A.

• (3) ⇒ (1)
Let us take x ∈ A. Since A = A∩B and by definition of intersection, x ∈ B. Therefore,
A ⊂ B.

∴ A ⊂ B ⇐⇒ A ∩B = A

Finally, since statement (1) is equivalent to both statements (2) and (3), then (2) ⇐⇒ (3).

Question 3 In class, we defined the uniqueness existential quantifier: ∃!. For example,
“∃!x ∈ X such that...” means “there exists a unique x in X such that...” However, such
statements can be defined using ∀, ∃, and logical operators.
Write a symbolic statement that is equivalent to “∃!x ∈ X such that P(X)” without using !.

∃x ∈ X such that P (x) ∧ ∀y ∈ X such that P (y) ⇒ y = x
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Question 4 Let us consider a function f : Rn → R.

(a) If f is strictly increasing, is it strongly increasing?

(b) If f is strongly increasing, is it strictly increasing?

(a) If f is strictly increasing does not imply that it is strongly increasing. Counterexample:
Let us consider f(x1, x2) = min{x1, x2}. We showed in the lecture notes that f is strictly
increasing. However, it is not strongly increasing. To see this, let us consider x = (2, 6) and
y = (2, 5). Notice that x ̸= y and x ≥ y. However, f(x) = f(y) = 2. Therefore, f is not
strongly increasing.

(b) WTS: if f is strongly increasing then it is strictly increasing.
Let us consider x ≫ y, that is, xi > yi for every i = 1, ..., n. This implies that x ̸= y. Since
f is strongly increasing, then f(x) > f(y). Therefore, f is strictly increasing.

Question 5 Use the epsilon-delta definition of a limit to prove that

lim
x→1

x

x2 + 1
=

1

2

In this example, L = 1
2
, a = 1, and f(x) = x

x2+1
.

Step 1: Choose an open interval containing a.
Let us consider x ∈ (0, 2).

Step 2: Start with the inequality |f(x)− L| < ε.

|f(x)− L| =
∣∣∣∣ x

x2 + 1
− 1

2

∣∣∣∣ = ∣∣∣∣−(x− 1)2

2(x2 + 1)

∣∣∣∣ < (x− 1)2

2

The inequality holds because we consider x ∈ (0, 2).

For an arbitrary ε > 0, the inequality |f(x)− L| < ε holds if:

(x− 1)2

2
< ε and x ∈ (0, 2)

|x− 1| <
√
2ε and |x− 1| < 1
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Step 3: Choose δ > 0 to make the inequality hold.

When we are given an arbitrary ε > 0, no matter how small ε is, we can always choose a
δ = min{1,

√
2ε} accordingly to have:

|f(x)− L| < ε whenever 0 < |x− a| < δ

Question 6 Use the Squeeze Theorem, prove that

lim
x→∞

(1 +
1

x2
)x = 1

(Hint: limx→∞(1 + 1
x
)x = e and limx→∞ e

1
x = 1)

Let g(x) = (1+ 1
x2 )

x. We need to find functions f(x) and h(x) such that f(x) ≤ g(x) ≤ h(x).

Let f(x) = 1. Since 1
x2 > 0 ⇒ 1 + 1

x2 > 1 then so is (1 + 1
x2 )

x. Therefore, f(x) ≤ g(x) and
limx→∞ f(x) = 1.

Let h(x) = e1/x. Since ln
(
1 + 1

x2

)
≤ 1

x2 ⇒ x ln
(
1 + 1

x2

)
≤ 1

x
⇒

(
1 + 1

x2

)x ≤ e1/x for x > 0.
And from the hint limx→∞ h(x) = 1

Thus, we have:

f(x) ≤ g(x) ≤ h(x)

1 ≤
(
1 +

1

x2

)x

≤ e1/x

and both f(x) and h(x) converge to 1 as x → ∞.

Therefore, limx→∞
(
1 + 1

x2

)x
= 1.
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