
Problem Set 1, Solutions
Math Camp 2025, UCSB
Instructors: Camilo Abbate and Sofía Olguín

1. Question 1
Consider a random sample X1, . . . ,Xn from a distribution with a mean µ and variance
σ2. Consider the variance estimator σ̂2

n defined as:

σ̂2
n = 1

n

n∑
i=1

(Xi − X̄n)2

where X̄n = 1
n

∑n
i=1 Xi is the sample mean.

(a) Show that σ̂2
n is a biased estimator of σ2.

We have shown in class that σ̂2
n can be expressed as:

σ̂2
n = 1

n

n∑
i=1

(Xi − X̄n)2 = 1
n

n∑
i=1

X2
i − X̄2

n

Taking expectations, we can write:

E[σ̂2
n] = E

[
1
n

n∑
i=1

X2
i − X̄2

n

]
= E[X2

i ]−E[X̄2
n]

= σ2 +µ2 −
(

σ2

n
+µ2

)

= σ2 − σ2

n

=
(

1− 1
n

)
σ2

(b) What is the bias?
The bias is given by:

Bias(σ̂2
n) = E[σ̂2

n]−σ2 =
(

1− 1
n

)
σ2 −σ2 = −σ2

n

(c) How can you modify σ̂2
n to make it unbiased?

To make the estimator unbiased, we can multiply it by n
n−1 :

S2
n = n

n−1 σ̂2
n = 1

n−1

n∑
i=1

(Xi − X̄n)2
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This new estimator S2
n is unbiased because:

E[S2
n] = n

n−1E[σ̂2
n] = n

n−1

(
1− 1

n

)
σ2 = σ2

2. Question 2
In class we saw that the MSE of an estimator θ̂ for a parameter θ can be decomposed
as:

MSE(θ̂) = V ar(θ̂)+Bias(θ̂)2

Let’s circle back to the comparison of the estimators

σ̂2
n = 1

n

n∑
i=1

(Xi − X̄n)2

and
S2

n = 1
n−1

n∑
i=1

(Xi − X̄n)2

Recall from the Lecture notes that:

Var(S2
n) = 2

n−1σ4 and Var(σ̂2
n) = 2(n−1)

n2 σ4

MSE(S2
n) = 2

n−1σ4 and MSE(σ̂2
n) = 2n−1

n2 σ4
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(a) Find the expression for the ratio V ar(S2
n)

V ar(σ̂2
n) .

V ar(S2
n)

V ar(σ̂2
n) =

2
n−1σ4

2(n−1)
n2 σ4

= n2

(n−1)2

(b) Find the expression for the ratio MSE(Sn)
MSE(σ̂2

n) .

MSE(S2
n)

MSE(σ̂2
n) =

2
n−1σ4

2n−1
n2 σ4 = 2n2

(n−1)(2n−1)

(c) Do a ggplot graph in R to visualize the two ratios above as a function of n (start
your graphs with n > 30). What do you observe? (Report the graphs and code)

Figure 1: Ratios of Variances and MSEs
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3. Question 3. The Chi-Squared Distribution
The chi-squared distribution with k degrees of freedom is defined as the distribution
of the sum of squares of k independent standard normal random variables:

Q =
k∑

i=1
Z2

i ∼ χ2(k)

where Zi
i.i.d.∼ N(0,1) for i = 1,2, . . . ,k.

In this exercise, you will visualize the shape of the χ2(k) distribution for different ks
using simulations.

(a) Generate R = 1,000 random samples from the χ2(5) distribution as follows:
i. For each replication r = 1,2, . . . ,R:

• Generate a random vector z(r) = (z(r)
1 , z

(r)
2 , . . . , z

(r)
5 ) where each z

(r)
i ∼

N(0,1)
• Compute Q(r) =∑5

i=1(z(r)
i )2

ii. Store all Q(r) values in a vector Q
(b) Create a histogram of the simulated values Q with 60 bins, scaled to have unit

area (i.e., a density histogram).
(c) On the same graph, plot the theoretical probability density function of the χ2(5)

distribution.

Figure 2: Histogram of Simulated Chi-Squared Values with Theoretical PDF Overlay
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4. Question 4. Randomization Inference
Use R to solve the following problem and report your code.
Consider the following extremely small sample from the GAIN Experiment.

Table 1: Six Observations from the GAIN Experiment

Individual Potential
Outcome Yi(0)

Potential
Outcome Yi(1)

Treatment
Di

Observed
Outcome Yi

Obs

1 66 ? 0 66
2 0 ? 0 0
3 0 ? 0 0
4 ? 0 1 0
5 ? 607 1 607
6 ? 436 1 436

The fundamental problem of causal inference is that we can never observe both poten-
tial outcomes for any single individual. We only observe:

Y Obs
i = Di ·Yi(1)+(1−Di) ·Yi(0)

A common estimator for the Average Treatment Effect (ATE) is the simple difference
in means from the sample:

τ̂ = 1
N1

∑
i:Di=1

Yi − 1
N0

∑
i:Di=0

Yi

where N1 and N0 are the number of treated and control units, respectively.

Calculating τ̂

(a) Calculate the mean outcome for the treatment group (Di = 1).

MeanD=1 = 607+436+0
3 = 347.67

(b) Calculate the mean outcome for the control group (Di = 0).

MeanD=0 = 66+0+0
3 = 22

(c) Calculate the simple difference in means (τ̂). Based only on this result, what
would you conclude about the effect of the program?

τ̂ = 347.67−22 = 325.67

One would naïvely conclude the program has a large, positive effect on earnings.
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Fisher’s Exact Test

We will now use Randomization Inference to test the sharp null hypothesis of no
treatment effect for any individual, formalized as:

H0 : Yi(1) = Yi(0) ∀ i

Under this null hypothesis, all potential outcomes are known and fixed. The observed
differences are solely due to the random assignment of treatment Di. Notice that if we
assume the null is true, table 1 becomes:

Table 2: Six Observations from the GAIN Experiment (Under Null Hypothesis)

Individual Potential
Outcome Yi(0)

Potential
Outcome Yi(1)

Treatment
Di

Observed
Outcome Yi

Obs

1 66 66 0 66
2 0 0 0 0
3 0 0 0 0
4 0 0 1 0
5 607 607 1 607
6 436 436 1 436

And we can derive the randomization distribution of any test statistic: a function
of the assignment vector D and the observed outcomes Yobs. This statistic varies only
because of the random assignment of treatment (D), not because of any uncertainty
about the potential outcomes.1 Consider the test statistic T (D,Yobs), basically τ̂ :

T = T (D,Yobs) = 1
3

6∑
i=1

Di ·Y obs
i − 1

3

6∑
i=1

(1−Di) ·Y obs
i .

(a) For the observed assignment vector Dobs = (0,0,0,1,1,1), calculate the value of
the test statistic, T . You can call this T obs (Repeating (c) from last question.)

T obs = 1
3(0+607+436)− 1

3(66+0+0) = 325.67

(b) How many possible D vectors are there for assigning the three treatment assign-
ments (Di = 1) to these six individuals? This is the number of possible permuta-
tions of the assignment vector. There are

(
6
3

)
= 20 possible ways to assign three

treatment statuses.
(c) The randomization distribution of the test statistic is generated by calculating

T (D,Yobs) for every possible assignment vector D, holding the vector of
outcomes fixed. For each possible assignment, calculate the T .

1There is no missing data issue.
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(d) Plot a histogram of T calculated under all possible random assignments. This
histogram represents the exact distribution of the test statistic under the sharp
null hypothesis.

Figure 3: Randomization Distribution of Test Statistic T

(e) On the histogram, mark the value of T Obs calculated in (a).
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Figure 4: Randomization Distribution of Test Statistic T

(f) Find the 2.5th percentile and the 97.5th percentile of this randomization distri-
bution. These form a 95% reference interval for the test statistic under the null
hypothesis. Assuming a continuous distribution and using linear interpolation
(type = 7 for the quantile() command in R) for the quantiles, the 2.5th percentile
is -348.7667 and the 97.5th percentile is 348.7667.

(g) Is the observed test statistic T obs from part (a) inside or outside this 95% interval?
Based on this, would you reject or fail to reject the null hypothesis H0 at the
5% significance level? The observed test statistic T obs = 325.67 is inside the
95% interval (-348.7667, 348.7667). Therefore, we fail to reject the sharp null
hypothesis of no effect for any individual at the 5% significance level.

(h) (Optional) Calculate the two-sided p-value. This is the probability, under the
null hypothesis, of observing a value of the test statistic that is as extreme in
absolute value than the one actually observed. Formally, it is the proportion of
assignment vectors for which |T (D,Yobs)| ≥ |T obs|.

(i) (Optional) Based on this p-value, what do you conclude about the null hypoth-
esis?

Naturally, for a larger dataset, performing the Fisher exact test gets computationally
intensive, so it’s rarely seen in practice. However, this is a pretty cool paper that uses
the randomization inference framework to re-evaluate the results of several high-profile
RCTs.
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