Problem Set 1, Solutions

Math Camp 2025, UCSB

Instructors: Camilo Abbate and Soffa Olguin
1. Question 1

Consider a random sample X1, ...,X,, from a distribution with a mean p and variance
o2. Consider the variance estimator 42 defined as:
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where X,, = 1 = > i=1 X; is the sample mean.

(a) Show that &2 is a biased estimator of 2.

We have shown in class that 62 can be expressed as:
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Taking expectations, we can write:
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(b) What is the bias?
The bias is given by:
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(c) How can you modify 62 to make it unbiased?
To make the estimator unbiased, we can multiply it by ~*5:
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This new estimator S2 is unbiased because:

E[S2] = " E[62] = " (1—1>02—02

Mop—1"" n-—1

2. Question 2

In class we saw that the M SFE of an estimator 0 for a parameter ¢ can be decomposed

as:
MSE(®) = Var(0)+ Bias()?

Let’s circle back to the comparison of the estimators

. 1 >
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and
S2— oS- X,
Recall from the Lecture notes that:
2 o 2(n—1)
Var(S2) = Ea‘* and  Var(62) = 3 ot
2 . 2n—1
MSE(S?) = ma‘* and MSE(62) = 3 ot



Var(S?
(a) Find the expression for the ratio ar(Sn)

Var(62)
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(b) Find the expression for the ratio ]\/[SEE&:%L;'
MSE(S?)  20? 2n2

MSE(62) ~ 21540~ (n—1)(2n—1)

(c¢) Do a ggplot graph in R to visualize the two ratios above as a function of n (start
your graphs with n > 30). What do you observe? (Report the graphs and code)
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Figure 1: Ratios of Variances and MSEs



3. Question 3. The Chi-Squared Distribution

The chi-squared distribution with k£ degrees of freedom is defined as the distribution
of the sum of squares of k£ independent standard normal random variables:

k
Q=7 ~x*(k)
=1

where Z; i N(0,1) fori=1,2,... k.

In this exercise, you will visualize the shape of the x?(k) distribution for different ks
using simulations.

(a) Generate R = 1,000 random samples from the y?(5) distribution as follows:

i. For each replication r=1,2,..., R:
« Generate a random vector z(") = (T),z(r),...,z(r) where each 2™ ~
1 2 5 7
N(0,1)

« Compute Q) = ¥°7_, ()2
ii. Store all Q") values in a vector Q

(b) Create a histogram of the simulated values Q with 60 bins, scaled to have unit
area (i.e., a density histogram).

(c) On the same graph, plot the theoretical probability density function of the x?(5)
distribution.
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Figure 2: Histogram of Simulated Chi-Squared Values with Theoretical PDF Overlay



4. Question 4. Randomization Inference

Use R to solve the following problem and report your code.

Consider the following extremely small sample from the GAIN Experiment.

Table 1: Six Observations from the GAIN Experiment

Individual Potential Potential Treatment Observed
Outcome Y;(0) | Outcome Yj(1) D; Outcome Y;%%
1 66 ? 0 66
2 0 ? 0 0
3 0 ? 0 0
4 ? 0 1 0
5 ? 607 1 607
6 ? 436 1 436

The fundamental problem of causal inference is that we can never observe both poten-
tial outcomes for any single individual. We only observe:

YO = D;-Yi(1) + (1 - Dy) - Yi(0)

A common estimator for the Average Treatment Effect (ATE) is the simple difference
in means from the sample:
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where Ny and Ny are the number of treated and control units, respectively.

Calculating 7

(a) Calculate the mean outcome for the treatment group (D; = 1).

607 + 436+ 0
Meanp_ — *3* 34767

(b) Calculate the mean outcome for the control group (D; =0).

66+0+0
==

Meanp—g = 22

(c) Calculate the simple difference in means (7). Based only on this result, what
would you conclude about the effect of the program?

7 =347.67—22 = 325.67

One would naively conclude the program has a large, positive effect on earnings.


https://pathwaystowork.acf.gov/initiative-resource/greater-avenues-independence-gain-1988-1990

Fisher’s Exact Test

We will now use Randomization Inference to test the sharp null hypothesis of no
treatment effect for any individual, formalized as:

Ho:Yi(1) =Y;(0) Vi

Under this null hypothesis, all potential outcomes are known and fixed. The observed
differences are solely due to the random assignment of treatment D;. Notice that if we
assume the null is true, table 1 becomes:

Table 2: Six Observations from the GAIN Experiment (Under Null Hypothesis)

Individual Potential Potential Treatment Observed
Outcome Y;(0) | Outcome Yj(1) D; Outcome Y;9%
1 66 66 0 66
2 0 0 0 0
3 0 0 0 0
4 0 0 1 0
5 607 607 1 607
6 436 436 1 436

And we can derive the randomization distribution of any test statistic: a function
of the assignment vector D and the observed outcomes Y°PS. This statistic varies only
because of the random assignment of treatment (D), not because of any uncertainty
about the potential outcomes.! Consider the test statistic T(D,YObS ), basically 7:

18 1.6
T = T(D,YObS) — gZDi'Y;ObS_ 52(1 _Di) .Y;obs'
=1 i=1

(a) For the observed assignment vector D = (0,0,0,1,1,1), calculate the value of
the test statistic, 7. You can call this T7°* (Repeating (c) from last question.)

1 1
Tobs — g(” +607 4 436) — é(66 +0+40) = 325.67

(b) How many possible D vectors are there for assigning the three treatment assign-
ments (D; = 1) to these six individuals? This is the number of possible permuta-
tions of the assignment vector. There are (2) = 20 possible ways to assign three
treatment statuses.

(c) The randomization distribution of the test statistic is generated by calculating
T(D,Y"bs) for every possible assignment vector D, holding the vector of
outcomes fixed. For each possible assignment, calculate the 7T'.

!There is no missing data issue.



(d) Plot a histogram of T calculated under all possible random assignments. This
histogram represents the exact distribution of the test statistic under the sharp
null hypothesis.
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Figure 3: Randomization Distribution of Test Statistic T’

(e) On the histogram, mark the value of T79% calculated in (a).



(f)

(i)

Histogram of T, under the Null
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Figure 4: Randomization Distribution of Test Statistic T’

T(D,Y)

Find the 2.5th percentile and the 97.5th percentile of this randomization distri-
bution. These form a 95% reference interval for the test statistic under the null
hypothesis. Assuming a continuous distribution and using linear interpolation
(type = 7 for the quantile() command in R) for the quantiles, the 2.5th percentile
is -348.7667 and the 97.5th percentile is 348.7667.

Is the observed test statistic 7°% from part (a) inside or outside this 95% interval?
Based on this, would you reject or fail to reject the null hypothesis Hy at the
5% significance level? The observed test statistic 79 = 325.67 is inside the
95% interval (-348.7667, 348.7667). Therefore, we fail to reject the sharp null
hypothesis of no effect for any individual at the 5% significance level.

(Optional) Calculate the two-sided p-value. This is the probability, under the
null hypothesis, of observing a value of the test statistic that is as extreme in
absolute value than the one actually observed. Formally, it is the proportion of
assignment vectors for which |T(D,Y)| > |T9%|.

(Optional) Based on this p-value, what do you conclude about the null hypoth-
esis?

Naturally, for a larger dataset, performing the Fisher exact test gets computationally
intensive, so it’s rarely seen in practice. However, this is a pretty cool paper that uses

the

randomization inference framework to re-evaluate the results of several high-profile

RCTs.


https://academic.oup.com/qje/article/134/2/557/5195544

